6,596 research outputs found

    Coulomb corrections to inclusive cross sections at the future Electron - Ion Collider

    Get PDF
    The experimental results of the future electron -- ion (eAe A) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- xx variable and large nuclei. Recently it has been suggested that Coulomb corrections can be important in inclusive and diffractive eAeA interactions. In this paper we present a detailed investigation of the impact of the Coulomb corrections to some of the observables that will be measured in the future eAeA collider. In particular, we estimate the magnitude of these corrections for the charm and longitudinal cross sections in inclusive and diffractive interactions. Our results demonstrate that the Coulomb corrections for these observables are negligible, which implies that they can be used to probe the QCD dynamics.Comment: 9 pages, 6 figures. Improved version to be published in Physical Review

    Quarkonium+γ\gamma production in coherent hadron - hadron interactions at LHC energies

    Full text link
    In this paper we study the H+γH + \gamma (H=J/ΨH = J/\Psi and Υ\Upsilon) production in coherent hadron - hadron interactions at LHC energies. Considering the ultrarelativistic protons as a source of photons, we estimate the γ+pH+γ+X\gamma + p \rightarrow H + \gamma + X cross section using the non-relativistic QCD (NRQCD) factorization formalism and considering different sets of values for the matrix elements. Our results for the total p+pp+H+γ+X p + p \rightarrow p + H + \gamma + X cross sections and rapidity distributions at s=7\sqrt{s} = 7 and 14 TeV demonstrate that the experimental analysis of the J/Ψ+γJ/\Psi + \gamma production at LHC is feasible.Comment: 6 pages, 3 figures, 1 table. Improved version with a new figure. Version to be published in European Physical Journal

    Detection of the Transverse Proximity Effect: Radiative Feedback from Bright QSOs

    Get PDF
    Measuring the response of the intergalactic medium to a blast of ionizing radiation allows one to infer the physical properties of the medium and, in principle, the lifetime and isotropy of the radiating source. The most sensitive such measurements can be made if the source of radiation is near the line of sight to a bright background QSO. We present results based on deep Keck/HIRES observations of the QSO triplet KP76, KP77 and KP78 at z ~2.5, with separations of 2-3 arcmin on the plane of the sky. Using accurate systemic redshifts of the QSOs from near-IR spectroscopy, we quantify the state of the IGM gas in the proximity regions where the expected ionizing flux from the foreground QSOs exceeds that of the metagalactic background by factors of 10-200, assuming constant and isotropic emission. Based on the unusual ionization properties of the absorption systems with detected HI, CIV, and OVI, we conclude that the gas has been significantly affected by the UV radiation from the nearby QSOs. Aided by observations of the galaxy density near the foreground QSOs, we discuss several effects that may explain why the transverse proximity effect has eluded most previous attempts to detect it. Our observations suggest that the luminosities of KP76 and KP77 have remained comparable to current values over timescales of, respectively, Delta t > 25 Myr and 16 Myr < Delta t < 33 Myr - consistent with typical QSO lifetimes estimated from independent, less-direct methods. There is no evidence that the UV radiation from either QSO was significantly anisotropic during these intervals.Comment: 19 pages, 17 figures, ApJ, in pres

    About possible contribution of intrinsic charm component to inclusive spectra of charmed mesons

    Full text link
    We calculate differential energy spectra (xFx_F-distributions) of charmed particles produced in proton-nucleus collisions, assuming the existence of intrinsic heavy quark components in the proton wave function. For the calculation, the recently proposed factorization scheme is used, based on the Color Glass Condensate theory and specially suited for predictions of a production of particles with large rapidities. It is argued that the intrinsic charm component can, if it exists, dominate in a sum of two components, intrinsic + extrinsic, of the inclusive spectrum of charmed particles produced in proton-nucleus collisions at high energies, in the region of medium xFx_F, 0.15<xF<0.70.15 < x_F < 0.7, and can give noticeable contribution to atmospheric fluxes of prompt muons and neutrinos.Comment: 10 pages, 4 figures. Version published in J. Phys. G

    Theory of standing spin waves in finite-size chiral spin soliton lattice

    Full text link
    We present a theory of standing spin wave (SSW) in a monoaxial chiral helimagnet. Motivated by experimental findings on the magnetic field-dependence of the resonance frequency in thin films of Cr{}Nb3_{3} S6{}_{6}[Goncalves et al., Phys. Rev. B95, 104415 (2017)], we examine the SSW over a chiral soliton lattice (CSL) excited by an ac magnetic field applied parallel and perpendicular to the chiral axis. For this purpose, we generalize Kittel-Pincus theories of the SSW in ferromagnetic thin films to the case of non-collinear helimagnet with the surface end spins which are softly pinned by an anisotropy field. Consequently, we found there appear two types of modes. One is a Pincus mode which is composed of a long-period Bloch wave and a short-period ripple originated from the periodic structure of the CSL. Another is a short-period Kittel ripple excited by space-periodic perturbation which exists only in the case where the ac field is applied perpendicular the chiral axis. We demonstrate that the existence of the Pincus mode and the Kittel ripple is consistent with experimentally found double resonance profile.Comment: 17 pages, 14 figure
    corecore